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Principle of Simulation:

• Take the equations f(t, xi)=0 encoding the different phenomena at play

• Discretize the space/time of simulation (e.g., using meshes and Δt)

• Implement the equations w.r.t. the discretization done in previous step

• Compute:

• For all Δt to simulate:

• Fixpoint to compute the xi so that the f(t, xi)=0 hold

Possibly many phenomena to take in account:

• Fluid Dynamics of different nature (air/gas/exhaust/rain/…)

• Solid (dilatation/corrosion/fatigue/…)

• Chemistry

• Energetic (e.g., to simulate lightnings or thermal signature)

• …
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Problem of this approach:

1/3 - needs unrealistic computation space

• Each phenomena has its preferred space discretization

• e.g., both fluid and energetic use mesh, but with different granularity

➢ either too fine discretization,

or lots of transfer functions with approximation errors



Context: Physical Phenomena Simulation

Orchestrating Multi-Physical Simulations, APM 2025

©
 D

a
s
s
a

u
lt
 A

v
ia

ti
o

n

5

h
tt

p
s
:/

/e
n

e
rg

y
e

d
u

c
a

ti
o

n
.c

a

Problem of this approach:

2/3 - needs unrealistic computation time

• Each phenomena has its preferred time discretization

• e.g., energetic is instantaneous, fluid is medium, solid is slow

➢ using the greatest common divisor is too fine for most phenomena

➢ also because Δt might change depending on the phenomena at play
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Problem of this approach:

3/3 - ad-hoc tricks specific to each phenomena

• Each phenomena has its specific tricks to make computation quicker

• e.g., fluid do not simulate turbulence (very fine grain phenomena, chaotic),

it generates it using functions tailored for the current simulation

➢ requires domain-specific knowledge and implementation

In practice: each phenomena has its dedicated simulator…

and extra work needs to be done to simulate multiple phenomena
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Multiple Phenomena Simulation: simulators orchestration

• Problem investigated for since the 70’s

• studied by apply mathematicians, physicists, numericians, …

• most solutions are hand-made and one-shot

• helping tools: cwipi, Palm/OpenPalm

• dead/live-locks are a real issue

• many computation problems, including

• data interpolation between meshes of different shapes

• techniques for different simulators to reach identical values

• Δt adaptation heuristics to avoid simulators crashing
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Multiple Phenomena Simulation: simulators orchestration

• Need to orchestrate Distributed Programs

• some simulators are distributed, some not

➢ orchestrator must be distributed to avoid bottle-neck

• No known publication about the CS aspects of this orchestration
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Lava and Heat

• heat is transferred from the lava to the rock, and to the air 

• the opposite is technically true, but negligible

➢ need for communications between the different simulators

▪ the Δt of every simulators are different

▪ three simulators interact over two “interfaces”:

➢ need to ensure that the computed values on both 

sides of each interface match

lava

rock

airheat



Shard and Lightning

• Which wind pressure the Shard must deal with

• Δt is about 10ms 

then, a lightning

• “instantaneously”, some gas becomes plasma

• if nothing is done, the fluid simulator breaks:

too big discontinuities because too quick change

➢Need to split its Δt and progressively insert the lightning

Problem Concept: Example (2/3)
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Automn

• Suppose constant wind that pushes the leaves

• The wind pushes the leaves

• The leaves move and impact the air-flow 

Problem Concept: Example (3/3)
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Simulators computation overlaps on the physical space

12
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Volume: sim1 ⇔ sim2

Volume: sim2 ⇔ sim3

Volume: sim3 ⇔ sim4

Surface: sim1 ⇔ sim2 ⇔ sim3

Point: sim1 ⇔ sim2 ⇔ sim3 ⇔ sim4

Surface: sim1 ⇔ sim2 ⇔ sim4

Surface: sim1 ⇔ sim4

Surface: sim2 ⇔ sim3 ⇔ sim4

Surface: sim3 ⇔ sim4

Simulators interact over “interfaces” (i.e., shared spaces)



Problem Concept: Analysis

Orchestrating Multi-Physical Simulations, APM 2025

For each Interface:

• Need a consensus over when to synchronize

• Need a consensus over computed values

(at every synchronization points)

14

Simulators interact over “Interfaces” (i.e., shared spaces)
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Methods to reach a consensus: synchronization points

• Very physics dependent: how quickly every physics is changing the interface

• Related to the number of iterations each simulator need to reach a fixpoint

• Related to the CFL condition [1] that (partially) characterizes Δt

• only solution: fixpoint over reaching a solution

• hypothesis: progress

• hypothesis: fault-less network and agents

15

[1] https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition
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Methods to reach a consensus: computed values (1/2)

1. Use an Oracle that sets the initial values

• prescriptive: the values are the ones expected at the end of the computation

• indicative: the values should be close to the ones expected, but could be changed during computation

• Possible oracles:

• none (uses the values of the previous computation step)

• one of the simulator (e.g., in example 1 and 2)

• ad-hoc functions

16
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Methods to reach a consensus: computed values (2/2)

2. Use an ad-hoc correction function after computation

• collect the values computed by every solver, and sets common values

• prescriptive: the values are the ones expected at the end of the computation

• indicative: the values should be close to the ones expected, but maybe slightly off

3. Use an additional fixpoint

• the values produced after the correction is fed as input to the new iteration

• these values “should” be closer to the expected ones

• arguments for termination = theorems (in practice, should use a timeout, just in case)

17
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Important details (1/5)

• Simulators as oracles = structural cause of deadlocks

• Oracles must be executed before the simulators using their values

• e.g., if specification error in example 1

• in interface               :

• Oracle(temperature) = sLava

• Oracle(pressure) = sRock

➢ Deadlock

18

heat

sLava

sRock

sAir
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Important details (2/5)

• Simulators may start later, and end sooner

➢ Would opposite dependencies in different interfaces also cause deadlocks?

19

sim1 sim2

interface 1

t0 t1

sim3 sim1

interface 2

t2

interface 1

sim2

t3
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Important details (3/5)

• Consensus can be “asymmetric”

• e.g., in example 2:

• wind sets the speed of the leaves

• leaves set the air-flow space

20
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Important details (4/5)

• Fixpoint in interfaces can interact badly

• Synchronization point = consensus over time advance

• e.g., in example 1:

• sRock and sAir agree to go to t+Δt(     )

• sLava and sRock cannot agree to go to t+Δt(     )

(Δt(     ) < Δt(     )) and must restart computation on t

➢ “commit” inconsistency

➢ When sLava and sRock agree, next Δt(     ) must ensure progress (sRock is already at t+Δt(     ))

21

heat

sLava

sRock

sAir
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Important details (5/5)

• Failure management

• Most of the time, failure are caused by simulators crashing/not converging

• bugs

• bad input values (i.e., the bug is silently from another simulator)

• bad configuration (e.g., Δt too big or too small)

• Error recovery can be very difficult:

• need to identify the cause of the problem (difficult)

• need to roll-back to a safe state (data may be too large to accurately store a safe state)

• or restart computation (which can take weeks) when the problem is identified

22
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• Problem: model the expected behavior of a simulation orchestration

• Abstraction:

• Simulators, oracles, ad-hoc corrections = functions

• in particular, the data updates performed by the correction in the simulators are abstracted away

• Ordering between functions in an interface = DAG

23
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Note: this intial state may not be sound…
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Rule to start an “interface”

all functions are synchronized all functions can continue

Compute consensus

Rule to consensus all functions commit their time next rdv for interface given by consensus
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Rule to stop an “interface”

all functions are synchronized at interface’s rdv some function cannot continue
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all functions are synchronized at interface’s rdv all functions can continue Compute consensus

Rule to continue an “interface”
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Rule to reset an “interface”

all functions are synchronized 

at interface’s rdv all functions can reset to last rdv

Reset timers and 

compute consensus

can reset
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Rule to advance time

must finish before its end

must finish before end 

of running interfaces

must finish before start 

of new interfaces

Note: since this semantics put synchronization points at every function begin/end, 

opposite dependencies in different interfaces cause deadlocks

Wait for dependencies
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This Work:

• Studied the context of Orchestrating of Multiple Physical Simulations

• From core principle of simulation, to illustrative examples

• Provided a model of interactions

• Abstracting away data, communication and distribution

• Focus on time and synchronization
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Future Work:

• Study deadlock freedom

• Compare to existing implementations / tools

• Refine the model

• Suggest improvements

• Refine the notion of consensus (currently involves all nodes of all simulators)

• Consider recent developments, including

• temporal interpolation

• Simulators with local Δt
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• Jean-Didier Garaud

• Gilles Chaineray

• Karim Anemiche

• Eric Quémerais

• And many others…

Thank You

Questions?


